Joining A Fanclub

When I started this blog, my plan was to write about interesting papers or at least blog about the ones from my lab. This post is a bit of both.

I was recently asked to write a “Journal Club” piece for Nature Reviews Molecular Cell Biology, which is now available online. It’s paywalled unfortunately. It’s also very short, due to the format. For these reasons, I thought I’d expand a bit on the papers I highlighted.

I picked two papers from Dick McIntosh’s group, published in J Cell Biol in the early 1990s as my subject. The two papers are McDonald et al. 1992 and Mastronarde et al. 1993.

Almost everything we know about the microanatomy of mitotic spindles comes from classical electron microscopy (EM) studies. How many microtubules are there in a kinetochore fibre? How do they contact the kinetochore? These questions have been addressed by EM. McIntosh’s group in Boulder, Colorado have published so many classic papers in this area, but there are many more coming from Conly Rieder, Alexey Khodjakov, Bruce McEwen and many others. Even with the advances in light microscopy which have improved spatial resolution (resulting in a Nobel Prize last year), EM is the only way to see individual microtubules within a complex subcellular structure like the mitotic spindle. The title of the piece, Super-duper resolution imaging of mitotic microtubules, is a bit of a dig at the fact that EM still exceeds the resolution available from super-resolution light microscopy. It’s not the first time that this gag has been used, but I thought it suited the piece quite well.

There are several reasons to highlight these papers over other electron microscopy studies of mitotic spindles.

It was the first time that 3D models of microtubules in mitotic spindles were built from electron micrographs of serial sections. This allowed spatial statistical methods to be applied to understand microtubule spacing and clustering. The software that was developed by David Mastronarde to do this was later packaged into IMOD. This is a great software suite that is actively maintained, free to download and is essential for doing electron microscopy. Taking on the same analysis today would be a lot faster, but still somewhat limited by cutting sections and imaging to get the resolution required to trace individual microtubules.

kfibreThe paper actually showed that some of the microtubules in kinetochore fibres travel all the way from the pole to the kinetochore, and that interpolar microtubules invade the bundle occasionally. This was an open question at the time and was really only definitively answered thanks to the ability to digitise and trace individual microtubules using computational methods.

The final thing I like about these papers is that it’s possible to reproduce the analysis. The methods sections are wonderfully detailed and of course the software is available to do similar work. This is in contrast to most papers nowadays, where it is difficult to understand how the work has been done in the first place, let alone to try and reproduce it in your own lab.

David Mastronarde and Dick McIntosh kindly commented on the piece that I wrote and also Faye Nixon in my lab made some helpful suggestions. There’s no acknowledgement section, so I’ll thank them all here.


McDonald, K. L., O’Toole, E. T., Mastronarde, D. N. & McIntosh, J. R. (1992) Kinetochore microtubules in PTK cells. J. Cell Biol. 118, 369—383

Mastronarde, D. N., McDonald, K. L., Ding, R. & McIntosh, J. R. (1993) Interpolar spindle microtubules in PTK cells. J. Cell Biol. 123, 1475—1489

Royle, S.J. (2015) Super-duper resolution imaging of mitotic microtubules. Nat. Rev. Mol. Cell. Biol. doi:10.1038/nrm3937 Published online 05 January 2015

The post title is taken from “Joining a Fanclub” by Jellyfish from their classic second and final LP “Spilt Milk”.

Insane In The Brain

Back of the envelope calculations for this post.

An old press release for a paper on endocytosis by Tom Kirchhausen contained this fascinating factoid:

The equivalent of the entire brain, or a football field of membrane, is turned over every hour

If this is true it is absolutely staggering. Let’s check it out.

A synaptic vesicle is ~40 nm in diameter. So the surface area of 1 vesicle is

\(4 \pi r^2\)

which is 5026 nm2, or 5.026 x 10-15 m2.

Synaptic vesicles in the presynaptic terminal (asterisk).
Synaptic vesicles in the presynaptic terminal (asterisk)

Now, an American football field is 5350 m2 (including both endzones), this is the equivalent of 1.065 x 1018 synaptic vesicles.

It is estimated that the human cortex has 60 trillion synapses. This means that each synapse would need to internalise 17742 vesicles to retrieve the area of membrane equivalent to one football field.

The factoid says this takes one hour. This membrane load equates to each synapse turning over 296 vesicles in one minute, which is 4.93 vesicles per second.

Tonic activity of neurons differs throughout the brain and actually 5 Hz doesn’t sound too high (feel free to correct me on this). We’ve only considered cortical neurons, so the factoid seems pretty plausible!

For an actual football field, i.e. Association Football. The calculation is slightly more complicated. This is because there is no set size for football pitches. In England, the largest is apparently Manchester City (7598 m2) while the smallest actually belongs to the greatest football team in the world, Crewe Alexandra (5518 m2).

Gresty Road. Small but perfectly formed

A brain would hoover up Man City’s ground in an hour if each synapse turned over 7 vesicles per second, while Gresty Road would only take 5 vesicles per second.

What is less clear from the factoid is whether a football field really equates to an “entire brain”. Bionumbers has no information on this. I think this part of the factoid may come from a different bit of data which is that clathrin-mediated endocytosis in non-neuronal cells can internalise the equivalent of the entire surface area of the cell in about an hour. I wonder whether this has been translated to neurons for the purposes of the quote. Either way, it is an amazing factoid that the brain can turnover this huge amount of membrane in such a short space of time.

So there you have it: quanta quantified on quantixed.

The post title is from “Insane In The Brain” by Cypress Hill from the album Black Sunday.

Strange Things

I noticed something strange about the 2013 Impact Factor data for eLife.

Before I get onto the problem. I feel I need to point out that I dislike Impact Factors and think that their influence on science is corrosive. I am a DORA signatory and I try to uphold those principles. I admit that, in the past, I used to check the new Impact Factors when they were released, but no longer. This year, when the 2013 Impact Factors came out I didn’t bother to log on to take a look. A chance Twitter conversation with Manuel Théry (@ManuelTHERY) and Christophe Leterrier (@christlet) was my first encounter with the new numbers.

Huh? eLife has an Impact Factor?

For those that don’t know, the 2013 Impact Factor is worked out by counting the total number of 2013 cites to articles in a given journal that were published in 2011 and 2012. This number is divided by the number of “citable items” in that journal in 2011 and 2012.

Now, eLife launched in October 2012. So it seems unfair that it gets an Impact Factor since it only published papers for 12.5% of the window under scrutiny. Is this normal?

I looked up the 2013 Impact Factor for Biology Open, a Company of Biologists journal that launched in January 2012* and… it doesn’t have one! So why does eLife get an Impact Factor but Biology Open doesn’t?**

elife-JIFLooking at the numbers for eLife revealed that there were 230 citations in 2013 to eLife papers in 2011 and 2012. One of which was a mis-citation to an article in 2011. This article does not exist (the next column shows that there were no articles in 2011). My guess is that Thomson Reuters view this as the journal existing for 2011 and 2012, and therefore deserving of an Impact Factor. Presumably there are no mis-cites in the Biology Open record and it will only get an Impact Factor next year. Doesn’t this call into question the veracity of the database? I have found other errors in records previously (see here). I also find it difficult to believe that no-one checked this particular record given the profile of eLife.

elfie-citesPerhaps unsurprisingly, I couldn’t track down the rogue citation. I did look at the cites to eLife articles from all years in Web of Science, the Thomson Reuters database (which again showed that eLife only started publishing in Oct 2012). As described before there are spurious citations in the database. Josh Kaplan’s eLife paper on UNC13/Tomosyn managed to rack up 5 citations in 2004, some 9 years before it was published (in 2013)! This was along with nine other papers that somehow managed to be cited in 2004 before they were published. It’s concerning enough that these data are used for hiring, firing and funding decisions, but if the data are incomplete or incorrect this is even worse.

Summary: I’m sure the Impact Factor of eLife will rise as soon as it has a full window for measurement. This would actually be 2016 when the 2015 Impact Factors are released. The journal has made it clear in past editorials (and here) that it is not interested in an Impact Factor and won’t promote one if it is awarded. So, this issue makes no difference to the journal. I guess the moral of the story is: don’t take the Impact Factor at face value. But then we all knew that already. Didn’t we?

* For clarity, I should declare that we have published papers in eLife and Biology Open this year.

** The only other reason I can think of is that eLife was listed on PubMed right away, while Biology Open had to wait. This caused some controversy at the time. I can’t see why a PubMed listing should affect Impact Factor. Anyhow, I noticed that Biology Open got listed in PubMed by October 2012, so in the end it is comparable to eLife.

Edit: There is an update to this post here.

Edit 2: This post is the most popular on Quantixed. A screenshot of visitors’ search engine queries (Nov 2014)…


The post title is taken from “Strange Things” from Big Black’s Atomizer LP released in 1986.

Round and Round

I thought I’d share a procedure for rotating a 2D set of coordinates about the origin. Why would you want do this? Well, we’ve been looking at cell migration in 2D – tracking nuclear position over time. Cells migrate at random and I previously blogged about ways to visualise these tracks more clearly. Part of this earlier procedure was to set the start of each track at (0,0). This gives a random hairball of tracks moving away from the origin. Wouldn’t it be a good idea to orient all the tracks so that the endpoint lies on the same axis? This would simplify the view and allow one to assess how ‘directional’ the cell tracks are. To rotate a set of coordinates, you need to use a rotation matrix. This allows you to convert the x,y coordinates to their new position x’,y’. This rotation is counter-clockwise.

\(x’ = x \cos \theta – y \sin \theta\,\)

\(y’ = x \sin \theta + y \cos \theta\,\)

However, we need to find theta first. To do this we need to find the angle between two lines, using this formula.

\(\cos \theta = \frac {\mathbf a \cdot \mathbf b}{\left \Vert {\mathbf a} \right \Vert \cdot \left \Vert {\mathbf b} \right \Vert} \)

The maths is kept to a minimum here. If you are interested, look at the code at the bottom.

beforeThe two lines (a and b) are formed by the x-axis (origin to some point on the x-axis, i.e. y=0) and by a line running from the origin to the last coordinate in the series. This calculation can be done for each track with theta for each track being used to rotate the that whole track (x,y changed to x’,y’ for each point).

Here is an example of just a few tracks from an experiment. Typically we have hundreds of tracks for each experimental group and the code will blast through them all very quickly (<1 s).


After rotation, the tracks are now aligned so that the last point is on the x-axis at y=0. This allows us to see how ‘directional’ the tracks are. The end points are now aligned, when they migrated there, how convoluted was their path.

The code to do this is up on Igor Exchange code snippets. A picture of the code is below (markup for code in WordPress is not very clear). See the code snippet if you want to use it.


The weakness of this method is that acos (arccos) only gives results from 0 to Pi (0 to 180°). There is a correction in the procedure, but everything needs editing if you want to rotate the co-ordinates to some other plane. Feedback welcome.

Edit Jim Prouty and A.G. have suggested two modifications to the code. The first is to use complex waves rather than 2D real waves. Then use two native Igor functions r2polar or p2rect. The second suggestion is to use Matrix operations! As is often the case with Igor there are several ways of doing things. The method described here is long-winded compared to a MatrixOp and if the waves were huge these solutions would be much, much faster. As it is, our migration movies typically have 60 points and as mentioned rotator() blasts through them very quickly. More complex coordinate sets would need something more sophisticated.

The post title is taken from “Round & Round” by New Order from their Technique LP.

Outer Limits

This post is about a paper that was recently published. It was the result of a nice collaboration between me and Francisco López-Murcia and Artur Llobet in Barcelona.

The paper in a nutshell
The availability of clathrin sets a limit for presynaptic function

Clathrin is a three legged protein that forms a cage around membranes during endoctosis. One site of intense clathrin-mediated endocytosis (CME) is the presynaptic terminal. Here, synaptic vesicles need to be recaptured after fusion and CME is the main route of retrieval. Clathrin is highly abundant in all cells and it is generally thought of as limitless for the formation of multiple clathrin-coated structures. Is this really true? In a neuron where there is a lot of endocytic activity, maybe the limits are tested?
It is known that strong stimulation of neurons causes synaptic depression – a form of reversible synaptic plasticity where the neuron can only evoke a weak postsynaptic response afterwards. Is depression a vesicle supply problem?

What did we find?
We showed that clathrin availability drops during stimulation that evokes depression. The drop in availability is due to clathrin forming vesicles and moving away from the synapse. We mimicked this by RNAi, dropping the clathrin levels and looking at synaptic responses. We found that when the clathrin levels drop, synaptic responses become very small. We noticed that fewer vesicles are able to be formed and those that do form are smaller. Interestingly, the amount of neurotransmitter (acetylcholine) in the vesicles was much less than the volume of the vesicles as measured by electron microscopy. This suggests there is an additional sorting problem in cells with lower clathrin levels.

Killer experiment
A third reviewer was called in (due to a split decision between Reviewers 1 and 2). He/she asked a killer question: all of our data could be due to an off-target effect of RNAi, could we do a rescue experiment? We spent many weeks to get the rescue experiment to work, but a second viral infection was too much for the cells and engineering a virus to express clathrin was very difficult. The referee also said: if clathrin levels set a limit for synaptic function, why don’t you just express more clathrin? Well, we would if we could! But this gave us an idea… why don’t we just put clathrin in the pipette and let it diffuse out to the synapses and rescue the RNAi phenotype over time? We did it – and to our surprise – it worked! The neurons went from an inhibited state to wild-type function in about 20 min. We then realised we could use the same method on normal neurons to boost clathrin levels at the synapse and protect against synaptic depression. This also worked! These killer experiments were a great addition to the paper and are a good example of peer review improving the paper.

Fran and Artur did almost all the experimental work. I did a bit of molecular biology and clathrin purification. Artur and I wrote the paper and put the figures together – lots of skype and dropbox activity.
Artur is a physiologist and his lab like to tackle problems that are experimentally very challenging – work that my lab wouldn’t dare to do – he’s the perfect collaborator. I have known Artur for years. We were postdocs in the same lab at the LMB in the early 2000s. We tried a collaborative project to inhibit dynamin function in adrenal chromaffin cells at that time, but it didn’t work out. We have stayed in touch and this is our first paper together. The situation in Spain for scientific research is currently very bad and it deteriorated while the project was ongoing. This has been very sad to hear about, but fortunately we were able to finish this project and we hope to work together more in the future.

We were on the cover!
25.coverNow the scientific literature is online, this doesn’t mean so much anymore, but they picked our picture for the cover. It is a single cell microculture expressing GFP that was stained for synaptic markers and clathrin. I changed the channels around for artistic effect.

What else?
J Neurosci is slightly different to other journals that I’ve published in recently (my only other J Neurosci paper was published in 2002). For the following reasons:

  1. No supplementary information. The journal did away with this years ago to re-introduce some sanity in the peer review process. This didn’t affect our paper very much. We had a movie of clathrin movement that would have gone into the SI at another journal, but we simply removed it here.
  2. ORCIDs for authors are published with the paper. This gives the reader access to all your professional information and distinguishes authors with similar names. I think this is a good idea.
  3. Submission fee. All manuscripts are subject to a submission fee. I believe this is to defray the costs of editorial work. I think this makes sense, although I’m not sure how I would feel if our paper had been rejected.


López-Murcia, F.J., Royle, S.J. & Llobet, A. (2014) Presynaptic clathrin levels are a limiting factor for synaptic transmission J. Neurosci., 34: 8618-8629. doi: 10.1523/JNEUROSCI.5081-13.2014

Pubmed | Paper

The post title is taken from “Outer Limits” a 7″ Single by Sleep ∞ Over released in 2010.

All This And More

I was looking at the latest issue of Cell and marvelling at how many authors there are on each paper. It’s no secret that the raison d’être of Cell is to publish the “last word” on a topic (although whether it fulfils that objective is debatable). Definitive work needs to be comprehensive. So it follows that this means lots of techniques and ergo lots of authors. This means it is even more impressive when a dual author paper turns up in the table of contents for Cell. Anyway, I got to thinking: has it always been the case that Cell papers have lots of authors and if not, when did that change?

I downloaded the data for all articles published by Cell (and for comparison, J Cell Biol) from Scopus. The records required a bit of cleaning. For example, SnapShot papers needed to be removed and also the odd obituary etc. had been misclassified as an article. These could be quickly removed. I then went back through and filtered out ‘articles’ that were less than three pages as I think it is not possible for a paper to be two pages or fewer in length. The data could be loaded into IgorPro and boxplots generated per year to show how author number varied over time. Reviews that are misclassified as Articles will still be in the dataset, but I figured these would be minimal.

Authors1First off: Yes, there are more authors on average for a Cell paper versus a J Cell Biol paper. What is interesting is that both journals had similar numbers of authors when Cell was born (1974) and they crept up together until the early 2000s, when the number of Cell authors kept increasing, or JCell Biol flattened off, whichever way you look at it.

I think the overall trend to more authors is because understanding biology has increasingly required multiple approaches and the bar for evidence seems to be getting higher over time. The initial creep to more authors (1974-2000) might be due to a cultural change where people (technicians/students/women) began to get proper credit for their contributions. However, this doesn’t explain the divergence between J Cell Biol and Cell in recent years. One possibility is Cell takes more non-cell biology papers and that these papers necessarily have more authors. For example, the polar bear genome was published in Cell (29 authors), and this sort of paper would not appear in J Cell Biol. Another possibility is that J Cell Biol has a shorter and stricter revision procedure, which means that multiple rounds of revision, collecting new techniques and new authors is more limited than it is at Cell. Any other ideas?

AuthorI also quickly checked whether more authors means more citations, but found no evidence for such a relationship. For papers published in the years 2000-2004, the median citation number for papers with 1-10 authors was pretty constant for J Cell Biol. For Cell, these data mere more noisy. Three-author papers tended to be cited a bit more than those with two authors, but then four author papers were also lower.

The number of authors on papers from our lab ranges from 2-9 and median is 3.5. This would put an average paper from our lab in the bottom quartile for JCB and in the lower 10% for Cell in 2013. Ironically, our 9 author paper (an outlier) was published in J Cell Biol. Maybe we need to get more authors on our papers before we can start troubling Cell with our manuscripts…

The Post title is taken from ‘All This and More’ by The Wedding Present from their LP George Best.

Into The Great Wide Open

We have a new paper out! You can read it here.

I thought I would write a post on how this paper came to be and also about our first proper experience with preprinting.

Title of the paper: Non-specificity of Pitstop 2 in clathrin-mediated endocytosis.

In a nutshell: we show that Pitstop 2, a supposedly selective clathrin inhibitor acts in a non-specific way to inhibit endocytosis.

Authors: Anna Willox, who was a postdoc in the lab from 2008-2012, did the flow cytometry measurements and Yasmina Sahraoui who was a summer student in my lab, did the binding experiments. And me.

Background: The description of “pitstops” – small molecules that inhibit clathrin-mediated endocytosis – back in 2011 in Cell was heralded as a major step-forward in cell biology. And it really would be a breakthrough if we had ways to selectively switch off clathrin-mediated endocytosis. Lots of nasty things gain entry into cells by hijacking this pathway, including viruses such as HIV and so if we could stop viral entry this could prevent cellular infection. Plus, these reagents would be really handy in the lab for cell biologists.

The rationale for designing the pitstop inhibitors was that they should block the interaction between clathrin and adaptor proteins. Adaptors are the proteins that recognise the membrane and cargo to be internalised – clathrin itself cannot do this. So if we can stop clathrin from binding adaptors there should be no internalisation – job done! Now, in 2000 or so, we thought that clathrin binds to adaptors via a single site on its N-terminal domain. This information was used in the drug screen that identified pitstops. The problem is that, since 2000, we have found that there are four sites on the N-terminal domain of clathrin that can each mediate endocytosis. So blocking one of these sites with a drug, would do nothing. Despite this, pitstop compounds, which were shown to have a selectivity for one site on the N-terminal domain of clathrin, blocked endocytosis. People in the field scratched their hands at how this is possible.

A damning paper was published in 2012 from Julie Donaldson’s lab showing that pitstops inhibit clathrin-independent endocytosis as well as clathrin-mediated endocytosis. Apparently, the compounds affect the plasma membrane and so all internalisation is inhibited. Many people thought this was the last that we would hear about these compounds. After all, these drugs need to be highly selective to be any use in the lab let alone in the clinic.

Our work: we had our own negative results using these compounds, sitting on our server, unpublished. Back in February 2011, while the Pitstop paper was under revision, the authors of that study sent some of these compounds to us in the hope that we could use these compounds to study clathrin on the mitotic spindle. The drugs did not affect clathrin binding to the spindle (although they probably should have done) and this prompted us to check whether the compounds were working – they had been shipped all the way from Australia so maybe something had gone wrong. We tested for inhibition of clathrin-mediated endocytosis and they worked really well.

At the time we were testing the function of each of the four interaction sites on clathrin in endocytosis, so we added Pitstop 2 to our experiments to test for specificity. We found  that Pitstop 2 inhibits clathrin-mediated endocytosis even when the site where Pitstops are supposed to bind, has been mutated! The picture shows that the compound (pink) binds where sequences from adaptors can bind. Mutation of this site doesn’t affect endocytosis, because clathrin can use any three of the other four sites. Yet Pitstop blocks endocytosis mediated by this mutant, so it must act elsewhere, non-specifically.

So the compounds were not as specific as claimed, but what could we do with this information? There didn’t seem enough to publish and I didn’t want people in the lab working on this as it would take time and energy away from other projects. Especially when debunking other people’s work is such a thankless task (why this is the case, is for another post). The Dutta & Donaldson paper then came out, which was far more extensive than our results and so we moved on.

What changed?

A few things prompted me to write this work up. Not least, Yasmina had since shown that our mutations were sufficient to prevent AP-2 binding to clathrin. This result filled a hole in our work. These things were:

  1. People continuing to use pitstops in published work, without acknowledging that they may act non-specifically. The turning point was this paper, which was critical of the Dutta & Donaldson work.
  2. People outside of the field using these compounds without realising their drawbacks.
  3. AbCam selling this compound and the thought of other scientists buying it and using it on the basis of the original paper made me feel very guilty that we had not published our findings.
  4. It kept getting easier and easier to publish “negative results”. Journals such as Biology Open from Company of Biologists or PLoS ONE and preprint servers (see below) make this very easy.

Finally, it was a twitter conversation with Jim Woodgett convinced me that, when I had the time, I would write it up.

To which, he replied:

I added an acknowledgement to him in our paper! So that, together with the launch of bioRxiv, convinced me to get the paper online.

The Preprinting Experience

This paper was our first proper preprint. We had put an accepted version of our eLife paper on bioRxiv before it came out in print at eLife, but that doesn’t really count. For full disclosure, I am an affiliate of bioRxiv.

The preprint went up on 13th February and we submitted it straight to Biology Open the next day. I had to check with the Journal that it was OK to submit a deposited paper. At the time they didn’t have a preprint policy (although I knew that David Stephens had submitted his preprinted paper there and he told me their policy was about to change). Biology Open now accept preprinted papers – you can check which journals do and which ones don’t here.

My idea was that I just wanted to get the information into the public domain as fast as possible. The upshot was, I wasn’t so bothered about getting feedback on the manuscript. For those that don’t know: the idea is that you deposit your paper, get feedback, improve your paper then submit it for publication. In the end I did get some feedback via email (not on the bioRxiv comments section), and I was able to incorporate those changes into the revised version. I think next time, I’ll deposit the paper and wait one week while soliciting comments and then submit to a journal.

It was viewed quite a few times in the time while the paper was being considered by Biology Open. I spoke to a PI who told me that they had found the paper and stopped using pitstop as a result. I think this means getting the work out there was worth it after all.

Now it is out “properly” in Biology Open and anyone can read it.

Verdict: I was really impressed by Biology Open. The reviewing and editorial work were handled very fast. I guess it helps that the paper was very short, but it was very uncomplicated. I wanted to publish with Biology Open rather than PLoS ONE as the Company of Biologists support cell biology in the UK. Disclaimer: I am on the committee of the British Society of Cell Biology which receives funding from CoB.

Depositing the preprint at bioRxiv was easy and for this type of paper, it is a no-brainer. I’m still not sure to what extent we will preprint our work in the future. This is unchartered territory that is evolving all the time, we’ll see. I can say that the experience for this paper was 100% positive.


Dutta, D., Williamson, C. D., Cole, N. B. and Donaldson, J. G. (2012) Pitstop 2 is a potent inhibitor of clathrin-independent endocytosis. PLoS One 7, e45799.

Lemmon, S. K. and Traub, L. M. (2012) Getting in Touch with the Clathrin Terminal Domain. Traffic, 13, 511-9.

Stahlschmidt, W., Robertson, M. J., Robinson, P. J., McCluskey, A. and Haucke, V. (2014) Clathrin terminal domain-ligand interactions regulate sorting of mannose 6-phosphate receptors mediated by AP-1 and GGA adaptors. J Biol Chem. 289, 4906-18.

von Kleist, L., Stahlschmidt, W., Bulut, H., Gromova, K., Puchkov, D., Robertson, M. J., MacGregor, K. A., Tomilin, N., Pechstein, A., Chau, N. et al. (2011) Role of the clathrin terminal domain in regulating coated pit dynamics revealed by small molecule inhibition. Cell 146, 471-84.

Willox, A.K., Sahraoui, Y.M.E. & Royle, S.J. (2014) Non-specificity of Pitstop 2 in clathrin-mediated endocytosis Biol Open, doi: 10.1242/​bio.20147955.

Willox, A.K., Sahraoui, Y.M.E. & Royle, S.J. (2014) Non-specificity of Pitstop 2 in clathrin-mediated endocytosis bioRxiv, doi: 10.1101/002675.

The post title is taken from ‘Into The Great Wide Open’ by Tom Petty and The Heartbreakers from the LP of the same name.