## Turn A Square: generative aRt

A while back I visited Artistes & Robots in Paris. Part of the exhibition was on the origins of computer-based art. Nowadays this is referred to as generative art, where computers generate artwork according to rules specified by the programmer. I wanted to emulate some of the early generative artwork I saw there, using R.

Some examples of early generative art

Georg Nees was a pioneer of computer-based artwork and he has a series of pieces using squares. An example I found on the web was Schotter (1968).

Another example using rotation of squares is Boxes by William J. Kolomyjec.

I set out to generate similar images where the parameters can be tweaked to adjust the final result. The code is available on GitHub. Here is a typical image. Read on for an explanation of the code.

Generating a grid of squares

I started by generating a grid of squares. We can use the segment command in R to do the drawing.

xWave <- seq.int(1:10)
yWave <- seq.int(1:10)

for (i in seq_along(xWave)) {
xCentre <- xWave[i]
for (j in seq_along(yWave)) {
yCentre <- yWave[j]
lt <- c(xCentre - 0.4,yCentre - 0.4)
rt <- c(xCentre + 0.4,yCentre - 0.4)
rb <- c(xCentre + 0.4,yCentre + 0.4)
lb <- c(xCentre - 0.4,yCentre + 0.4)
new_shape_start <- rbind(lt,rt,rb,lb)
new_shape_end <- rbind(rt,rb,lb,lt)
new_shape <- cbind(new_shape_start,new_shape_end)
if(i == 1 &amp;&amp; j == 1) {
multiple_segments <- new_shape
} else {
multiple_segments <- rbind(multiple_segments,new_shape)
}
}
}
par(pty="s")
plot(0, 0,
xlim=c(min(xWave)-1,max(xWave)+1),
ylim=c(min(yWave)-1,max(yWave)+1),
col = "white", xlab = "", ylab = "", axes=F)
segments(x0 = multiple_segments[,1],
y0 = multiple_segments[,2],
x1 = multiple_segments[,3],
y1 = multiple_segments[,4])


We’re using base R graphics to make this artwork – nothing fancy. Probably the code can be simplified!

The next step was to add some complexity and flexibility. I wanted to be able to control three things:

1. the size of the grid
2. the grout (distance between squares)
3. the amount of hysteresis (distorting the squares, rather than rotating them).

Here is the code. See below for some explanation and examples.

# this function will make grid art
# arguments define the number of squares in each dimension (xSize, ySize)
# grout defines the gap between squares (none = 0, max = 1)
# hFactor defines the amount of hysteresis (none = 0, max = 1, moderate = 10)
make_grid_art <- function(xSize, ySize, grout, hFactor) {
xWave <- seq.int(1:xSize)
yWave <- seq.int(1:ySize)
axMin <- min(min(xWave) - 1,min(yWave) - 1)
axMax <- max(max(xWave) + 1,max(yWave) + 1)
nSquares <- length(xWave) * length(yWave)
x <- 0
halfGrout <- (1 - grout) / 2
for (i in seq_along(yWave)) {
yCentre <- yWave[i]
for (j in seq_along(xWave)) {
if(hFactor < 1) {
hyst <- rnorm(8, halfGrout, 0)
}
else {
hyst <- rnorm(8, halfGrout, sin(x / (nSquares - 1) * pi) / hFactor)
}
xCentre <- xWave[j]
lt <- c(xCentre - hyst[1],yCentre - hyst[2])
rt <- c(xCentre + hyst[3],yCentre - hyst[4])
rb <- c(xCentre + hyst[5],yCentre + hyst[6])
lb <- c(xCentre - hyst[7],yCentre + hyst[8])
new_shape_start <- rbind(lt,rt,rb,lb)
new_shape_end <- rbind(rt,rb,lb,lt)
new_shape <- cbind(new_shape_start,new_shape_end)
if(i == 1 &amp;&amp; j == 1) {
multiple_segments <- new_shape
} else {
multiple_segments <- rbind(multiple_segments,new_shape)
}
x <- x + 1
}
}
par(mar = c(0,0,0,0))
plot(0, 0,
xlim=c(axMin,axMax),
ylim=c(axMax,axMin),
col = "white", xlab = "", ylab = "", axes=F, asp = 1)
segments(x0 = multiple_segments[,1],
y0 = multiple_segments[,2],
x1 = multiple_segments[,3],
y1 = multiple_segments[,4])
}


The amount of hysteresis is an important element. It determines the degree of distortion for each square. The distortion is done by introducing noise into the coordinates for each square that we map onto the grid. The algorithm used for the distortion is based on a half-cycle of a sine wave. It starts and finishes on zero distortion of the coordinates. In between it rises and falls symmetrically introducing more and then less distortion as we traverse the grid.

Changing the line of code that assigns a value to hyst will therefore change the artwork. Let’s look at some examples.

# square grid with minimal hysteresis
make_grid_art(10,10,0.2,50)

# square grid (more squares) more hysteresis
make_grid_art(20,20,0.2,10)

# rectangular grid same hysteresis
make_grid_art(25,15,0.2,10)

# same grid with no hysteresis
make_grid_art(25,15,0.2,0)

# square grid moderate hysteresis and no grout
make_grid_art(20,20,0,10)


Hopefully this will give you some ideas for simple schemes to generate artwork in R. I plan to add to the GitHub repo when get the urge. There is already some other generative artwork code in there for Igor Pro. Two examples are shown below (I don’t think I have written about this before on quantixed).

The post title comes from “Turn A Square” by The Shins from their album Chutes Too Narrow.

## Small Talk: How big is your lab?

I really dislike being asked “how big is your lab?”. The question usually arises at scientific meetings when you are chatting to someone during a break. Small talk can lead to some banal questions being asked, and that’s fine, but when this question is asked seriously, the person asking really just wants to compare themselves to you in some way. This is one reason why I dislike being asked “how big is your lab?”.

The other reason I don’t like the question is that it can be difficult to answer. I don’t mean that I have so many people in my group that I can’t possibly count them. No, I mean that it can be difficult to give an accurate answer. There’s perhaps a student in the group who is currently writing up, or possibly they’ve handed in their thesis and they are awaiting a viva – do they count towards the tally? They are in your lab but they’re not in your lab. Perhaps you jointly supervise someone, or maybe there is someone who is away working in another lab somewhere. I’m guilty of overthinking this or at least fretting about giving an incorrect answer. Whatever the circumstance, I think that the size of most research groups is not very stable over time, so I dislike the question because it’s difficult answer accurately.

I looked at group size recently because the lab had surpassed the milestone of having 50 all-time members and I wanted to see how the group size had varied over time.

The first timeline shows the arrival and departure of lab members over time. The role of each person is colour coded as indicated. Note that some people start in one role and get upgraded. PG to PhD, PhD to Post-doc (PDRA). So what it the group size over time?

It turns out that we peaked this year with a team size of 12. The smallest size (besides the period where I started out, when I was on my own!) was at the end of 2012 when I prepared to move the lab to a different university. What has the make up of the lab been during this time.

In this last plot the fraction of the team that are PhD, post-doc etc. is shown over time. This plot is interesting because I can see that it was two years before a PhD student joined the group and also how the lab has become post-doc-heavy in the last 18 months.

So what is the answer to “how big is your lab?”. Well, take your pick. Right now it is 11 with someone just joined this week. Over the last year it has averaged at just over 10. Over the last five years it has been 8 to 9. It’s still not an easy question to answer even if you can see all the data.

Methods: I have been trying to use R for these type of posts, so that sharing the code is more useful, but I drew a blank with this one. I found several tools to plot the first timeline (timevis and vistime). To do the integration and breakdown plots, I struggled… I knew exactly how to make those plots in Igor, so that’s what I did. All that was required was a list of the people, their role, their start-end dates, and a few lines of code. I keep a record of this as previously mentioned.

The post title comes from “Small Talk” a track by American Culture on a Split 7″ with Boyracer on Emotional Response Records.

## My Blank Pages VI: Programming in Igor Pro

It has been a long time since I wrote a book review.

A few months ago I read on IgorExchange that Martin Schmid had written a book about programming Igor. I snapped up a copy. I’m a competent Igor programmer but I was hoping that this book would be useful for lab members that want to learn.

Learning Igor – like most IDEs or programming languages – is tough going. There’s a booklet from WaveMetrics (the company that sells Igor Pro) called Getting Started – which is really good. There are a few other guides on the web (Payam’s guide, Thomas Braun’s coding conventions, quantixed’s own translator), but other resources are pretty scarce. The Igor Manual itself is excellent but it’s many, many pages long and is only meant to be consulted. So I was intrigued whether Martin Schmid’s book would fill the gap between Getting Started and more advanced guides.

What makes Igor Pro so fantastic is the way that you can use it for so many different things: image processing, statistics, graphing, curve fitting, instrument control and so on. Part of the challenge of writing a book on Igor Programming is deciding what to cover. Schmid deals with this by covering basic programming and core-intermediate topics such as dialogs, loops, string magic etc. The book stops short of any specialised applications. So it’s a really useful intermediate programming guide. It’s a great little book and is recommended for those who want to dig further after doing the Getting Started exercises.

I knew I would learn something from the book because there’s always alternative ways to do stuff in Igor: things that you didn’t know about or little tricks to do stuff faster. What I was surprised about was the first thing mentioned in the book was new to me. The author favours module-static programming. All of my Igor programming has been done in the global pragma and I have avoided this more C-like way of encapsulating programs that I’ve written so far. Module-static works well because it eliminates naming conflicts. I have dealt with name conflicts by using static functions which are called from the top of the stack, and the top has a unique name (arguably this is the same as module-static, but not identical). As the Igor Manual says “this gets tedious after a while” and that’s true. Although in my defence, name conflicts are generally not a problem for the way I work because I favour a reproducible approach. A new experiment is started – one user-written ipf is opened – and the code is run. This means naming conflicts are minimised. The book has actually convinced me that module-static is a good thing, especially since my Igor code is now deployed around the lab and naming conflicts could easily become a problem. It’s an advanced programming technique but is dealt with early by the author and it kind of works. After this, more basic programming topics are covered in depth.

There’s always room for improvement: there are several example programs at the back which need to be rekeyed to run, since this is a paper book and no electronic version is available AFAIK. The author has put one up here to save rekeying and another here, but otherwise you need to type in the examples to see what will happen. This is too long-winded. I’ve been spoiled reading texts about R where the examples can all be run from a markdown file inside RStudio. It would’ve been nice if the code was made available for this book. I don’t think it would compromise the value of the book since it is the text that is most valuable.

The book is available at Amazon for £7.99 at the time of writing.

My Blank Pages is a track by Velvet Crush. This is an occasional series of book reviews.

## Cloud Eleven: A cloud-based code sharing solution for IgorPro

This post is something of a “how to” guide. The problem is how can you share code with a small team and keep it up-to-date?

For ImageJ, the solution is simple. You can make an ImageJ update site and then push any updated code to the user when they startup ImageJ. For IgorPro, there is no equivalent. Typically I send ipf files to someone and they run the code, but I have to resend them whenever there’s an update. This can cause confusion over which is the latest version.

I’ve tried a bunch of things such as versioning the code (this at least tells you if the person is running an out-of-date version). I also put the code up on GitHub and tell people to pull down the latest version, but again this doesn’t work well. The topic of how to share code comes up perennially on the Igor mailing list and on IgorExchange, so it’s clearly something that people struggle with. I’ve found the solutions offered to be a bit daunting.

My solution is detailed here with some code to make it run.

The details

It is possible to use aliases (shortcuts on Windows) in the User’s WaveMetrics folders to point to external files. Items in the Igor Procedures directory get loaded when you start Igor. Items in User Procedures can get loaded optionally. These aliases sit in the Users Wavemetrics folder (the exact location depends on the Igor Version) and this means that the program itself can get updated without overwriting these files.

So, if aliases are created here that point to a cloud-based repo of Igor Code it can be used to:

1. Optionally load code as the user needs it. Because the code sits in the cloud it can be updated and instantly used by everyone.
2. Force Igor to load a bit of code to make a little menu item so that the user can pick the code they want to load.

To get this working, I made use of Ryotako’s excellent menu loader which was written for loading the “hidden” WaveMetrics procedures. I created a version like that one which makes a menu of our shared code in alphabetical order. I then made a version that allows the code to be grouped by purpose. People in my group told me they prefer this version. Code just needs to be organised in folders for it to work.

The IgorDistro.ipf just needs to be placed in a folder called IP somewhere in a share that users have access to (unless people are contributing to code development, you can make the share read-only). In the same directory that IP sits in, place a folder called UP with all of your code organised into folders. Aliases need to be created that point Igor Procedures folder to IP and User Procedures to UP. That’s it! I’ve tested it on IP7 and IP8, on Windows and Mac, using a shared Dropbox as the cloud repo.

Obviously, the correct IgorPro licences need to be in place to share the code with multiple users.

The post title comes from the pseudonymous LP by Cloud Eleven. A great debut album. The track “Wish I” is worth the price of the record alone (assuming people still buy records).

## Esoteric Circle

Many projects in the lab involve quantifying circular objects. Microtubules, vesicles and so on are approximately circular in cross section. This quick post is about how to find the diameter of these objects using a computer.

So how do you measure the diameter of an object that is approximately circular? Well, if it was circular you would measure the distance from one edge to the other, crossing the centre of the object. It doesn’t matter along which axis you do this. However, since these objects are only approximately circular, it matters along which axis you measure. There are a couple of approaches that can be used to solve this problem.

Principal component analysis

The object is a collection of points* and we can find the eigenvectors and eigenvalues of these points using principal component analysis. This was discussed previously here. The 1st eigenvector points along the direction of greatest variance and the 2nd eigenvector is normal to the first. The order of eigenvectors is determined by their eigenvalues. We use these to rotate the coordinate set and offset to the origin.

Now the major axis of the object is aligned to the x-axis at y=0 and the minor axis is aligned with the y-axis at x=0 (compare the plot on the right with the one on the left, where the profiles are in their original orientation – offset to zero). We can then find the absolute values of the axis crossing points and when added together these represent the major axis and minor axis of the object. In Igor, this is done using a oneliner to retrieve a rotated set of coords as the wave M_R.

PCA/ALL/SEVC/SRMT/SCMT xCoord,yCoord

To find the crossing points, I use Igor’s interpolation-based level crossing functions. For example, storing the aggregated diameter in a variable called len.

FindLevel/Q/EDGE=1/P m1c0, 0
len = abs(m1c1(V_LevelX))
FindLevel/Q/EDGE=2/P m1c0, 0
len += abs(m1c1(V_LevelX))

This is just to find one axis (where m1c0 and m1c1 are the 1st and 2nd columns of a 2-column wave m1) and so you can see it is a bit cumbersome.

Anyway, I was quite happy with this solution. It is unbiased and also tells us how approximately circular the object is (because the major and minor axes tell us the aspect ratio or ellipticity of the object). I used it in Figure 2 of this paper to show the sizes of the coated vesicles. However, in another project we wanted to state what the diameter of a vesicle was. Not two numbers, just one. How do we do that? We could take the average of the major and minor axes, but maybe there’s an easier way.

Polar coordinates

The distance from the centre to every point on the edge of the object can be found easily by converting the xy coordinates to polar coordinates. To do this, we first find the centre of the object. This is the centroid $$(\bar{x},\bar{y})$$ represented by

$$\bar{x} = \frac{1}{n}\sum_{i=1}^{n} x_{i}$$ and $$\bar{y} = \frac{1}{n}\sum_{i=1}^{n} y_{i}$$

for n points and subtract this centroid from all points to arrange the object around the origin. Now, since the xy coords are represented in polar system by

$$x_{i} = r_{i}\cos(\phi)$$ and $$y_{i} = r_{i}\sin(\phi)$$

we can find r, the radial distance, using

$$r_{i} = \sqrt{x_{i}^{2} + y_{i}^{2}}$$

With those values we can then find the average radial distance and report that.

There’s something slightly circular (pardon the pun) about this method because all we are doing is minimising the distance to a central point initially and then measuring the average distance to this minimised point in the latter step. It is much faster than the PCA approach and would be insensitive to changes in point density around the object. The two methods would probably diverge for noisy images. Again in Igor this is simple:

Make/O/N=(dimsize(m1,0)-1)/FREE rW

rW[] = sqrt(m1[p][0]^2 + m1[p][1]^2)

len = 2 * mean(rW)
Here again, m1 is the 2-column wave of coords and the diameter of the object is stored in len.

How does this compare with the method above? The answer is kind of obvious, but it is equidistant between the major and minor axes. Major axis is shown in red and minor axis shown in blue compared with the mean radial distance method (plotted on the y-axis). In places there is nearly a 10 nm difference which is considerable for objects which are between 20 and 35 nm in diameter. How close is it to the average of the major and minor axis? Those points are in black and they are very close but not exactly on y=x.

So for simple, approximately circular objects with low noise, the ridiculously simple polar method gives us a single estimate of the diameter of the object and this is much faster than the more complex methods above. For more complicated shapes and noisy images, my feeling is that the PCA approach would be more robust. The two methods actually tell us two subtly different things about the shapes.

Why don’t you just measure them by hand?

In case there is anyone out there wondering why a computer is used for this rather than a human wielding the line tool in ImageJ… there are two good reasons.

1. There are just too many! Each image has tens of profiles and we have hundreds of images from several experiments.
2. How would you measure the profile manually? This approach shows two unbiased methods that don’t rely on a human to draw any line across the object.

* = I am assuming that the point set is already created.

The post title is taken from “Esoteric Circle” by Jan Garbarek from the LP of the same name released in 1969. The title fits well since this post is definitely esoteric. But maybe someone out there is interested!

## Parallel lines: new paper on modelling mitotic microtubules in 3D

We have a new paper out! You can access it here.

The people

This paper really was a team effort. Faye Nixon and Tom Honnor are joint-first authors. Faye did most of the experimental work in the final months of her PhD and Tom came up with the idea for the mathematical modelling and helped to rewrite our analysis method in R. Other people helped in lots of ways. George did extra segmentation, rendering and movie making. Nick helped during the revisions of the paper. Ali helped to image samples… the list is quite long.

The paper in a nutshell

We used a 3D imaging technique called SBF-SEM to see microtubules in dividing cells, then used computers to describe their organisation.

What’s SBF-SEM?

Serial block face scanning electron microscopy. This method allows us to take an image of a cell and then remove a tiny slice, take another image and so on. We then have a pile of images which covers the entire cell. Next we need to put them back together and make some sense of them.

How do you do that?

We use a computer to track where all the microtubules are in the cell. In dividing cells – in mitosis – the microtubules are in the form of a mitotic spindle. This is a machine that the cell builds to share the chromosomes to the two new cells. It’s very important that this process goes right. If it fails, mistakes can lead to diseases such as cancer. Before we started, it wasn’t known whether SBF-SEM had the power to see microtubules, but we show in this paper that it is possible.

We can see lots of other cool things inside the cell too like chromosomes, kinetochores, mitochondria, membranes. We made many interesting observations in the paper, although the focus was on the microtubules.

So you can see all the microtubules, what’s interesting about that?

The interesting thing is that our resolution is really good, and is at a large scale. This means we can determine the direction of all the microtubules in the spindle and use this for understanding how well the microtubules are organised. Previous work had suggested that proteins whose expression is altered in cancer cause changes in the organisation of spindle microtubules. Our computational methods allowed us to test these ideas for the first time.

Resolution at a large scale, what does that mean?

The spindle is made of thousands of microtubules. With a normal light microscope, we can see the spindle but we can’t tell individual microtubules apart. There are improvements in light microscopy (called super-resolution) but even with those improvements, right in the body of the spindle it is still not possible to resolve individual microtubules. SBF-SEM can do this. It doesn’t have the best resolution available though. A method called Electron Tomography has much higher resolution. However, to image microtubules at this large scale (meaning for one whole spindle), it would take months or years of effort! SBF-SEM takes a few hours. Our resolution is better than light microscopy, worse than electron tomography, but because we can see the whole spindle and image more samples, it has huge benefits.

What mathematical modelling did you do?

Cells are beautiful things but they are far from perfect. The microtubules in a mitotic spindle follow a pattern, but don’t do so exactly. So what we did was to create a “virtual spindle” where each microtubule had been made perfect. It was a bit like “photoshopping” the cell. Instead of straightening the noses of actresses, we corrected the path of every microtubule. How much photoshopping was needed told us how imperfect the microtubule’s direction was. This measure – which was a readout of microtubule “wonkiness” – could be done on thousands of microtubules and tell us whether cancer-associated proteins really cause the microtubules to lose organisation.

The publication process

The paper is published in Journal of Cell Science and it was a great experience. Last November, we put up a preprint on this work and left it up for a few weeks. We got some great feedback and modified the paper a bit before submitting it to a journal. One reviewer gave us a long list of useful comments that we needed to address. However, the other two reviewers didn’t think our paper was a big enough breakthrough for that journal. Our paper was rejected*. This can happen sometimes and it is frustrating as an author because it is difficult for anybody to judge which papers will go on to make an impact and which ones won’t. One of the two reviewers thought that because the resolution of SBF-SEM is lower than electron tomography, our paper was not good enough. The other one thought that because SBF-SEM will not surpass light microscopy as an imaging method (really!**) and because EM cannot be done live (the cells have to be fixed), it was not enough of a breakthrough. As I explained above, the power is that SBF-SEM is between these two methods. Somehow, the referees weren’t convinced. We did some more work, revised the paper, and sent it to J Cell Sci.

J Cell Sci is a great journal which is published by Company of Biologists, a not-for-profit organisation who put a lot of money back into cell biology in the UK. They are preprint friendly, they allow the submission of papers in any format, and most importantly, they have a fast-track*** option. This allowed me to send on the reviews we had and including our response to them. They sent the paper back to the reviewer who had a list of useful comments and they were happy with the changes we made. It was accepted just 18 days after we sent it in and it was online 8 days later. I’m really pleased with the whole publishing experience with J Cell Sci.

* I’m writing about this because we all have papers rejected. There’s no shame in that at all. Moreover, it’s obvious from the dates on the preprint and on the JCS paper that our manuscript was rejected from another journal first.

** Anyone who knows something about microscopy will find this amusing and/or ridiculous.

*** Fast-track is offered by lots of journals nowadays. It allows authors to send in a paper that has been reviewed elsewhere with the peer review file. How the paper has been revised in light of those comments is assessed by at the Editor and one peer reviewer.

Parallel lines is of course the title of the seminal Blondie LP. I have used this title before for a blog post, but it matches the topic so well.

## Adventures in Code V: making a map of Igor functions

I’ve generated a lot of code for IgorPro. Keeping track of it all has got easier since I started using GitHub – even so – I have found myself writing something only to discover that I had previously written the same thing. I was thinking that it would be good to make a list of all functions that I’ve written to locate long lost functions.

This question was brought up on the Igor mailing list a while back and there are several solutions – especially if you want to look at dependencies. However, this two liner works to generate a file called funcfile.txt which contains a list of functions and the ipf file that they are appear in.

grep "^[ \t]*Function" *.ipf | grep -oE '[ \t]+[A-Za-z_0-9]+\(' | tr -d " " | tr -d "(" > output
for i in cat output; do grep -ie "\$i" *.ipf | grep -w "Function" >> funcfile.txt ; done


Thanks to Thomas Braun on the mailing list for the idea. I have converted it to work on grep (BSD grep) 2.5.1-FreeBSD which runs on macOS. Use the terminal, cd to the directory containing your ipf files and run it. Enjoy!

EDIT: I did a bit more work on this idea and it has now expanded to its own repo. Briefly, funcfile.txt is converted to tsv and then parsed – using Igor – to json. This can be displayed using some d3.js magic.

Part of a series with code snippets and tips.

## Realm of Chaos

Caution: this post is for nerds only.

I watched this numberphile video last night and was fascinated by the point pattern that was created in it. I thought I would quickly program my own version to recreate it and then look at patterns made by more points.

I didn’t realise until afterwards that there is actually a web version of the program used in the video here. It is a bit limited though so my code was still worthwhile.

A fractal triangular pattern can be created by:

1. Setting three points
2. Picking a randomly placed seed point
3. Rolling a die and going halfway towards the result
4. Repeat last step

If the first three points are randomly placed the pattern is skewed, so I added the ability to generate an equilateral triangle. Here is the result.

and here are the results of a triangle through to a decagon.

All of these are generated with one million points using alpha=0.25. The triangle, pentagon and hexagon make nice patterns but the square and polygons with more than six points make pretty uninteresting patterns.

Watching the creation of the point pattern from a triangular set is quite fun. This is 30000 points with a frame every 10 points.

Here is the code.

Some other notes: this version runs in IgorPro. In my version, the seed is set at the centre of the image rather than a random location. I used the random allocation of points rather than a six-sided dice.

The post title is taken from the title track from Bolt Thrower’s “Realm of Chaos”.

## Elevation: accuracy of a Garmin Edge 800 GPS device

I use a Garmin 800 GPS device to log my cycling activity. including my commutes. Since I have now built up nearly 4 years of cycling the same route, I had a good dataset to look at how accurate the device is.

I wrote some code to import all of the rides tagged with commute in rubiTrack 4 Pro (technical details are below). These tracks needed categorising so that they could be compared. Then I plotted them out as a gizmo in Igor Pro and compared them to a reference data set which I obtained via GPS Visualiser.

The reference dataset is black. Showing the “true” elevation at those particular latitude and longitude coordinates. Plotted on to that are the commute tracks coloured red-white-blue according to longitude. You can see that there are a range of elevations recorded by the device, apart from a few outliers they are mostly accurate but offset. This is strange because I have the elevation of the start and end points saved in the device and I thought it changed the altitude it was measuring to these elevation positions when recording the track, obviously not.

To look at the error in the device I plotted out the difference in the measured altitude at a given location versus the true elevation. For each route (to and from work) a histogram of elevation differences is shown to the right. The average difference is 8 m for the commute in and 4 m for the commute back. This is quite a lot considering that all of this is only ~100 m above sea level. The standard deviation is 43 m for the commute in and 26 m for the way back.

This post at VeloViewer comparing GPS data on Strava from pro-cyclists riding the St15 of 2015 Giro d’Italia sprang to mind. Some GPS devices performed OK, whereas others (including Garmin) did less well. The idea in that post is that rain affects the recording of some units. This could be true and although I live in a rainy country, I doubt it can account for the inaccuracies recorded here. Bear in mind that that stage was over some big changes in altitude and my recordings, very little. On the other hand, there are very few tracks in that post whereas there is lots of data here.

It’s interesting that the data is worse going in to work than coming back. I do set off quite early in the morning and it is colder etc first thing which might mean the unit doesn’t behave as well for the commute to work. Both to and from work tracks vary most in lat/lon recordings at the start of the track which suggests that the unit is slow to get an exact location – something every Garmin user can attest to. Although I always wait until it has a fix before setting off. The final two plots show what the beginning of the return from work looks like for location accuracy (travelling east to west) compared to a midway section of the same commute (right). This might mean the the inaccuracy at the start determines how inaccurate the track is. As I mentioned, the elevation is set for start and end points. Perhaps if the lat/lon is too far from the endpoint it fails to collect the correct elevation.

Conclusion

I’m disappointed with the accuracy of the device. However, I have no idea whether other GPS units (including phones) would outperform the Garmin Edge 800 or even if later Garmin models are better. This is a good but limited dataset. A similar analysis would be possible on a huge dataset (e.g. all strava data) which would reveal the best and worst GPS devices and/or the best conditions for recording the most accurate data.

Technical details

I described how to get GPX tracks from rubiTrack 4 Pro into Igor and how to crunch them in a previous post. I modified the code to get elevation data out from the cycling tracks and generally made the code slightly more robust. This left me with 1,200 tracks. My commutes are varied. I frequently go from A to C via B and from C to A via D which is a loop (this is what is shown here). But I also go A to C via D, C to A via B and then I also often extend the commute to include 30 km of Warwickshire countryside. The tracks could be categorized by testing whether they began at A or C (this rejected some partial routes) and then testing whether they passed through B or D. These could then be plotted and checked visually for any routes which went off course, there were none. The key here is to pick the right B and D points. To calculate the differences in elevation, the simplest thing was to get GPS Visualiser to tell me what the elevation should be for all the points I had. I was surprised that the API could do half a million points without complaining. This was sufficient to do the rest. Note that the comparisons needed to be done as lat/lon versus elevation because due to differences in speed, time or trackpoint number lead to inherent differences in lat/lon (and elevation). Note also due to the small scale I didn’t bother converting lat/lon into flat earth kilometres.

The post title comes from “Elevation” by Television, which can be found on the classic “Marquee Moon” LP.

## Colours Running Out: Analysis of 2016 running

Towards the end of 2015, I started distance running. I thought it’d be fun to look at the frequency of my runs over the course of 2016.

Most of my runs were recorded with a GPS watch. I log my cycling data using Rubitrack, so I just added my running data to this. This software is great but to do any serious number crunching, other software is needed. Yes, I know that if I used strava I can do lots of things with my data… but I don’t. I also know that there are tools for R to do this, but I wrote something in Igor instead. The GitHub repo is here. There’s a technical description below, as well as some random thoughts on running (and cycling).

The animation shows the tracks I recorded as 2016 rolled by. The routes won’t mean much to you, but I can recognise most of them. You can see how I built up the distance to run a marathon and then how the runs became less frequent through late summer to October. I logged 975 km with probably another 50 km or so not logged.

Technical description

To pull the data out of rubiTrack 4 Pro is actually quite difficult since there is no automated export. An applescript did the job of going through all the run activities and exporting them as gpx. There is an API provided by Garmin to take the data straight from the FIT files recorded by the watch, but everything is saved and tagged in rubiTrack, so gpx is a good starting point. GPX is an xml format which can be read into Igor using XMLutils XOP written by andyfaff. Previously, I’ve used nokogiri for reading XML, but this XOP keeps everything within Igor. This worked OK, but I had some trouble with namespaces which I didn’t resolve properly and what is in the code is a slight hack. I wrote some code which imported all the files and then processed the time frame I wanted to look at. It basically looks at a.m. and p.m. for each day in the timeframe. Igor deals with date/time nicely and so this was quite easy. Two lookups per day were needed because I often went for two runs per day (run commuting). I set the lat/lon at the start of each track as 0,0. I used the new alpha tools in IP7 to fade the tracks so that they decay away over time. They disappear with 1/8 reduction in opacity over a four day period. Igor writes out to mov which worked really nicely, but wordpress can’t host movies, so I added a line to write out TIFFs of each frame of the animation and assembled a nice gif using FIJI.

Getting started with running

Getting into running was almost accidental. I am a committed cyclist and had always been of the opinion: since running doesn’t improve aerobic cycling performance (only cycling does that), any activity other than cycling is a waste of time. However, I realised that finding time for cycling was getting more difficult and also my goal is to keep fit and not to actually be a pro-cyclist, so running had to be worth a try. Roughly speaking, running is about three times more time efficient compared to cycling. One hour of running approximates to three hours of cycling. I thought, I would just try it. Over the winter. No more than that. Of course, I soon got the running bug and ran through most of 2016. Taking part in a few running events (marathon, half marathons, 10K). A quick four notes on my experience.

1. The key thing to keeping running is staying healthy and uninjured. That means building up distance and frequency of running very slowly. In fact, the limitation to running is the body’s ability to actually do the distance. In cycling this is different, as long as you fuel adequately and you’re reasonably fit, you could cycle all day if you wanted. This not true of running, and so, building up to doing longer distances is essential and the ramp up shouldn’t be rushed. Injuries will cost you lost weeks on a training schedule.
2. There’s lots of things “people don’t tell you” about running. Blisters and things everyone knows about, but losing a toenail during a 20 km run? Encountering runner’s GI problems? There’s lots of surprises as you start out. Joining a club or reading running forums probably helps (I didn’t bother!). In case you are wondering, the respective answers are getting decent shoes fitted and well, there is no cure.
3. Going from cycling to running meant going from very little upper body mass to gaining extra muscle. This means gaining weight. This is something of a shock to a cyclist and seems counterintuitive, since more activity should really equate to weight loss. I maintained cycling through the year, but was not expecting a gain of ~3 kilos.
4. As with any sport, having something to aim for is essential. Training for training’s sake can become pointless, so line up something to shoot for. Sign up for an event or at least have an achievement (distance, average speed) in your mind that you want to achieve.

So there you have it. I’ll probably continue to mix running with cycling in 2017. I’ll probably extend the repo to do more with cycling data if I have the time.

The post title is taken from “Colours Running Out” by TOY from their eponymous LP.