Turn That Heartbeat Over Again: comparing wrist and chest-strap HRM

As a geek, the added bonus of exercise is the fun that you can have with the data you’ve generated. A recent conversation on Twitter about the accuracy of wrist-based HRMs got me thinking… how does a wrist-based HRM compare with a traditional chest-strap HRM? Conventional wisdom says that the chest-strap is more accurate, but my own experience of chest-strap HRMs is that they are a bit unreliable. Time to put it to the test.

I have a Garmin Fēnix 5 which records wrist-based HR and I have a Garmin chest-strap which uses ANT+ to transmit. I could pick up the ANT+ signal with a Garmin Edge 800 so that I could record both datasets simultaneously, on the same bike ride. Both the Fēnix and Edge can record GPS and Time (obviously) allowing accurate registration of the data. I also set both devices to receive cadence data via ANT+ from the same cadence/speed sensor so that I could control for (or at least look at) variability in recordings. I rode for a ~1 hr ~32 km to capture enough data. Obviously this is just one trial but the data gives a feel for the accuracy of the two HRMs. Biking, I figured was a fair activity since upper body and wrist movement is minimal, meaning that the contacts for both HRMs are more likely to stay in place than if I was running.

I’ll get to heart rate last. First, you can see that the GPS recording is virtually identical between the two units – so that’s a good sign. Second, elevation is pretty similar too. There’s a bit of divergence at the beginning and end of the ride, since those parts are over the same stretch of road, neither device looks totally accurate. I’d be inclined to trust the Fēnix here since has a newer altimeter in it. Third, cadence looks accurate. Remember this data is coming off the same sensor and so any divergence is in how it’s being logged. Finally, heart rate. You can see that at the beginning of the ride, both wrist-based and chest-strap HRMs struggle. Obviously I have no reference here to know which trace is correct, but the chest-strap recording looks like it has an erroneous low reading for several minutes but is otherwise normal. The wrist-based HRM looks like it is reading 120ish bpm values from the start and then snaps into reading the right thing after a while. The chest-strap makes best contact when some perspiration has built up, which might explain its readings. The comparisons are shown below in grey. The correlation is OK but not great. Compared to cadence, the data diverge a lot more which rules out simple logging differences as a cause.

I found a different story in Smart recording mode on the Fēnix. This is a lower frequency recording mode, which is recommended to preserve battery life for long activities.

So what can we see here? Well, the data from the Fēnix are more patchy but even so, the data are pretty similar except for heart rate. The Fēnix performs badly here. Again, you can see the drop out of the chest strap HRM for a few minutes at the start, but otherwise it seems pretty reliable.  The comparison graph for heart rate shows how poorly the wrist-based HRM measures heart rate, in this mode.

OK, this is just two rides, for one person – not exactly conclusive but it gives some idea about the data that are captured with each HRM.

Conclusions

Wrist-based HRM is pretty good (at the higher sampling rate only) especially considering how the technology works, plus chest-strap HRMs can be uncomfortable to wear, so wrist-based HRM may be all you need. If you are training to heart rate zones, or want the best data, chest-strap HRM is more reliable than wrist-based HRM generally. Neither are very good for very short activities (<15 min).

For nerds only

Comparisons like these are quite easy to do in desktop packages like Rubitrack (which I love) or Ascent or others. They tend to mask things like missing data points, they smooth out the data and getting the plots the way you want is not straightforward. So, I took the original FIT files from each unit and used these for processing. There’s a great package for R called cycleRtools. This worked great except for the smart recording data which was sampled irregularly and it turns out and the package requires monotonic sampling. I generated a gpx file and parsed the data for this activity in R using XML. I found this snippet on the web (modified slightly).

library(XML)
library(plyr)
filename <- "myfile.gpx"
gpx.raw <- xmlTreeParse(filename, useInternalNodes = TRUE)
rootNode <- xmlRoot(gpx.raw)
gpx.rawlist <- xmlToList(rootNode)$trk
gpx.list <- unlist(gpx.rawlist[names(gpx.rawlist) == "trkseg"], recursive = FALSE)
gpx <- do.call(rbind.fill, lapply(gpx.list, function(x) as.data.frame(t(unlist(x)), stringsAsFactors=F)))
names(gpx) <- c("ele", "time", "temp", "hr", "cad", "lat", "lon")

Otherwise:

library(cycleRtools)
edge <- as.data.frame(read_fit(file = file.choose(), format = TRUE, CP = NULL, sRPE = NULL))
write.csv(edge, file = "edge.csv", row.names = F)

The resulting data frames could be saved out as csv and read into Igor to make the plots. I wrote a quick function in Igor to resample all datasets at 1 Hz. The plots and layout were generated by hand.

The post title comes from “Turn That Heartbeat Over Again” by Steely Dan from Can’t Buy A Thrill

I’m not following you II: Twitter data and R

My activity on twitter revolves around four accounts.

I try to segregate what happens on each account, and there’s inevitably some overlap. But what about overlap in followers?

What lucky people are following all four? How many only see the individual accounts?

It’s quite easy to look at this in R.

So there are 36 lucky people (or bots!) following all four accounts. I was interested in the followers of the quantixed account since it seemed to me that it attracts people from a slightly different sphere. It looks like about one-third of quantixed followers only follow quantixed, about one-third follow clathrin also and more or less the remainder are “all in” following three accounts or all four. CMCB followers are split about the same. The lab account is a bit different, with close to one-half of the followers also following clathrin.

Extra nerd points:

This is a Venn diagram and not an Euler plot. Venn just shows schematically the intersections and does not attempt to encode information in the area of each part. Euler plots for greater than three groups are hard to generate and to make any sense of what is shown. It is a dataviz problem to look at the proportions or lots of groups. A solution here would be to generate a further four Venn diagrams. On each, display the proportion for one category as a fraction or percentage

How to do it:

Last time, I described how to set up rtweet and make a Twitter app for use in R. You can use this to pull down lists of followers and extract their data. Using the intersect function you can work out the numbers of followers at each intersection. For four accounts, there will be 1 group of four, 4 groups of three, 6 groups of two. The VennDiagram package just needs the total numbers for all four groups and then details of the intersections, i.e. you don’t need to work out the groups minus their intersections – it does this for you.

library(rtweet)
library(httpuv)
library(VennDiagram)
## whatever name you assigned to your created app
appname <- "whatever_name"
## api key (example below is not a real key)
key <- "blah614h"
## api secret (example below is not a real key)
secret <- "blah614h"
## create token named "twitter_token"
twitter_token <- create_token(
app = appname,
consumer_key = key,
consumer_secret = secret)
clathrin_followers <- get_followers("clathrin", n = "all")
clathrin_followers_names <- lookup_users(clathrin_followers)
quantixed_followers <- get_followers("quantixed", n = "all")
quantixed_followers_names <- lookup_users(quantixed_followers)
cmcb_followers <- get_followers("Warwick_CMCB", n = "all")
cmcb_followers_names <- lookup_users(cmcb_followers)
roylelab_followers <- get_followers("roylelab", n = "all")
roylelab_followers_names <- lookup_users(roylelab_followers)
# a = clathrin
# b = quantixed
# c = cmcb
# d = roylelab
## now work out intersections
anb <- intersect(clathrin_followers_names$user_id,quantixed_followers_names$user_id)
anc <- intersect(clathrin_followers_names$user_id,cmcb_followers_names$user_id)
and <- intersect(clathrin_followers_names$user_id,roylelab_followers_names$user_id)
bnc <- intersect(quantixed_followers_names$user_id,cmcb_followers_names$user_id)
bnd <- intersect(quantixed_followers_names$user_id,roylelab_followers_names$user_id)
cnd <- intersect(cmcb_followers_names$user_id,roylelab_followers_names$user_id)
anbnc <- intersect(anb,cmcb_followers_names$user_id)
anbnd <- intersect(anb,roylelab_followers_names$user_id)
ancnd <- intersect(anc,roylelab_followers_names$user_id)
bncnd <- intersect(bnc,roylelab_followers_names$user_id)
anbncnd <- intersect(anbnc,roylelab_followers_names$user_id)
## four-set Venn diagram
venn.plot <- draw.quad.venn(
area1 = nrow(clathrin_followers_names),
area2 = nrow(quantixed_followers_names),
area3 = nrow(cmcb_followers_names),
area4 = nrow(roylelab_followers_names),
n12 = length(anb),
n13 = length(anc),
n14 = length(and),
n23 = length(bnc),
n24 = length(bnd),
n34 = length(cnd),
n123 = length(anbnc),
n124 = length(anbnd),
n134 = length(ancnd),
n234 = length(bncnd),
n1234 = length(anbncnd),
category = c("Clathrin", "quantixed", "CMCB", "RoyleLab"),
fill = c("dodgerblue1", "red", "goldenrod1", "green"),
lty = "dashed",
cex = 2,
cat.cex = 1.5,
cat.col = c("dodgerblue1", "red", "goldenrod1", "green"),
fontfamily = "Helvetica",
cat.fontfamily = "Helvetica"
);
# write to file
png(filename = "Quad_Venn_diagram.png");
grid.draw(venn.plot);
dev.off()

I’ll probably return to rtweet in future and will recycle the title if I do.

Like last time, the post title is from “I’m Not Following You” the final track from the 1997 LP of the same name from Edwyn Collins

Frankly, Mr. Shankly

I read about Antonio Sánchez Chinchón’s clever approach to use the Travelling Salesperson algorithm to generate some math-art in R. The follow up was even nicer in my opinion, Pencil Scribbles. The subject was Boris Karloff as the monster in Frankenstein. I was interested in running the code (available here and here), so I thought I’d run it on a famous scientist.

By happy chance one of the most famous scientists of the 20th Century, Rosalind Franklin, shares a nominative prefix with the original subject. There is also a famous portrait of her that I thought would work well.

I first needed needed to clear up the background because it was too dark.

Now to run the TSP code.

The pencil scribbles version is nicer I think.

The R scripts basically ran out-of-the-box. I was using a new computer that didn’t have X11quartz on it nor the packages required, but once that they were installed I just needed to edit the line to use a local file in my working directory. The code just ran. The outputs FrankyTSP and Franky_scribbles didn’t even need to be renamed, given my subject’s name.

Thanks to Antonio for making the code available and so easy to use.

The post title comes from “Frankly, Mr. Shankly” by The Smiths which appears on The Queen is Dead. If the choice of post title needs an explanation, it wasn’t a good choice…

Parallel lines: new paper on modelling mitotic microtubules in 3D

We have a new paper out! You can access it here.

The people

This paper really was a team effort. Faye Nixon and Tom Honnor are joint-first authors. Faye did most of the experimental work in the final months of her PhD and Tom came up with the idea for the mathematical modelling and helped to rewrite our analysis method in R. Other people helped in lots of ways. George did extra segmentation, rendering and movie making. Nick helped during the revisions of the paper. Ali helped to image samples… the list is quite long.

The paper in a nutshell

We used a 3D imaging technique called SBF-SEM to see microtubules in dividing cells, then used computers to describe their organisation.

What’s SBF-SEM?

Serial block face scanning electron microscopy. This method allows us to take an image of a cell and then remove a tiny slice, take another image and so on. We then have a pile of images which covers the entire cell. Next we need to put them back together and make some sense of them.

How do you do that?

We use a computer to track where all the microtubules are in the cell. In dividing cells – in mitosis – the microtubules are in the form of a mitotic spindle. This is a machine that the cell builds to share the chromosomes to the two new cells. It’s very important that this process goes right. If it fails, mistakes can lead to diseases such as cancer. Before we started, it wasn’t known whether SBF-SEM had the power to see microtubules, but we show in this paper that it is possible.

We can see lots of other cool things inside the cell too like chromosomes, kinetochores, mitochondria, membranes. We made many interesting observations in the paper, although the focus was on the microtubules.

So you can see all the microtubules, what’s interesting about that?

The interesting thing is that our resolution is really good, and is at a large scale. This means we can determine the direction of all the microtubules in the spindle and use this for understanding how well the microtubules are organised. Previous work had suggested that proteins whose expression is altered in cancer cause changes in the organisation of spindle microtubules. Our computational methods allowed us to test these ideas for the first time.

Resolution at a large scale, what does that mean?

The spindle is made of thousands of microtubules. With a normal light microscope, we can see the spindle but we can’t tell individual microtubules apart. There are improvements in light microscopy (called super-resolution) but even with those improvements, right in the body of the spindle it is still not possible to resolve individual microtubules. SBF-SEM can do this. It doesn’t have the best resolution available though. A method called Electron Tomography has much higher resolution. However, to image microtubules at this large scale (meaning for one whole spindle), it would take months or years of effort! SBF-SEM takes a few hours. Our resolution is better than light microscopy, worse than electron tomography, but because we can see the whole spindle and image more samples, it has huge benefits.

What mathematical modelling did you do?

Cells are beautiful things but they are far from perfect. The microtubules in a mitotic spindle follow a pattern, but don’t do so exactly. So what we did was to create a “virtual spindle” where each microtubule had been made perfect. It was a bit like “photoshopping” the cell. Instead of straightening the noses of actresses, we corrected the path of every microtubule. How much photoshopping was needed told us how imperfect the microtubule’s direction was. This measure – which was a readout of microtubule “wonkiness” – could be done on thousands of microtubules and tell us whether cancer-associated proteins really cause the microtubules to lose organisation.

The publication process

The paper is published in Journal of Cell Science and it was a great experience. Last November, we put up a preprint on this work and left it up for a few weeks. We got some great feedback and modified the paper a bit before submitting it to a journal. One reviewer gave us a long list of useful comments that we needed to address. However, the other two reviewers didn’t think our paper was a big enough breakthrough for that journal. Our paper was rejected*. This can happen sometimes and it is frustrating as an author because it is difficult for anybody to judge which papers will go on to make an impact and which ones won’t. One of the two reviewers thought that because the resolution of SBF-SEM is lower than electron tomography, our paper was not good enough. The other one thought that because SBF-SEM will not surpass light microscopy as an imaging method (really!**) and because EM cannot be done live (the cells have to be fixed), it was not enough of a breakthrough. As I explained above, the power is that SBF-SEM is between these two methods. Somehow, the referees weren’t convinced. We did some more work, revised the paper, and sent it to J Cell Sci.

J Cell Sci is a great journal which is published by Company of Biologists, a not-for-profit organisation who put a lot of money back into cell biology in the UK. They are preprint friendly, they allow the submission of papers in any format, and most importantly, they have a fast-track*** option. This allowed me to send on the reviews we had and including our response to them. They sent the paper back to the reviewer who had a list of useful comments and they were happy with the changes we made. It was accepted just 18 days after we sent it in and it was online 8 days later. I’m really pleased with the whole publishing experience with J Cell Sci.

 

* I’m writing about this because we all have papers rejected. There’s no shame in that at all. Moreover, it’s obvious from the dates on the preprint and on the JCS paper that our manuscript was rejected from another journal first.

** Anyone who knows something about microscopy will find this amusing and/or ridiculous.

*** Fast-track is offered by lots of journals nowadays. It allows authors to send in a paper that has been reviewed elsewhere with the peer review file. How the paper has been revised in light of those comments is assessed by at the Editor and one peer reviewer.

Parallel lines is of course the title of the seminal Blondie LP. I have used this title before for a blog post, but it matches the topic so well.

The International Language of Screaming

A couple of recent projects have meant that I had to get to grips more seriously with R and with MATLAB. Regular readers will know that I am a die-hard IgorPro user. Trying to tackle a new IDE is a frustrating experience, as anyone who has tried to speak a foreign language will know. The speed with which you can do stuff (or get your point across) is very slow. Not only that, but… if you could just revert to your mother tongue it would be so much easier…

The Babel Fish
The Babel Fish from http://hitchhikers.wikia.com/wiki/Babel_Fish

What I needed was something like a Babel Fish. As I’m sure you’ll know, this fish is the creation of Douglas Adams. It allows instant translation of any language. The only downside is that you have to insert the fish into your ear.

The closest thing to the Babel Fish in computing is the cheat sheet. These sheets are typically a huge list of basic commands that you’ll need as you get going. I found a nice page which had cheat sheets which allowed easy interchange between R, MATLAB and python. There was no Igor version. Luckily, a user on IgorExchange had taken the R and MATLAB page and added some Igor commands. This was good, but it was a bit rough and incomplete. I took this version, formatted it for GitHub flavored markdown, and made some edits.

The repo is here. I hope it’s useful for others. I learned a lot putting it together. If you are an experienced user of R, MATLAB or IGOR (or better still can speak one or more of these languages), please fork and make edits or suggest changes via GitHub issues, or by leaving a comment on this page if you are not into GitHub. Thanks!

R-MATLAB-IGOR-CheatSheet

Here is a little snapshot to whet your appetite. Bon appetit!

cssnapshot

 

The post title is taken from “The International Language of Screaming” by Super Furry Animals from their Radiator LP. Released as a single, the flip-side had a version called NoK which featured the backing tracking to the single. Gruff sings the welsh alphabet with no letter K.