I’m not following you II: Twitter data and R

My activity on twitter revolves around four accounts.

I try to segregate what happens on each account, and there’s inevitably some overlap. But what about overlap in followers?

What lucky people are following all four? How many only see the individual accounts?

It’s quite easy to look at this in R.

So there are 36 lucky people (or bots!) following all four accounts. I was interested in the followers of the quantixed account since it seemed to me that it attracts people from a slightly different sphere. It looks like about one-third of quantixed followers only follow quantixed, about one-third follow clathrin also and more or less the remainder are “all in” following three accounts or all four. CMCB followers are split about the same. The lab account is a bit different, with close to one-half of the followers also following clathrin.

Extra nerd points:

This is a Venn diagram and not an Euler plot. Venn just shows schematically the intersections and does not attempt to encode information in the area of each part. Euler plots for greater than three groups are hard to generate and to make any sense of what is shown. It is a dataviz problem to look at the proportions or lots of groups. A solution here would be to generate a further four Venn diagrams. On each, display the proportion for one category as a fraction or percentage

How to do it:

Last time, I described how to set up rtweet and make a Twitter app for use in R. You can use this to pull down lists of followers and extract their data. Using the intersect function you can work out the numbers of followers at each intersection. For four accounts, there will be 1 group of four, 4 groups of three, 6 groups of two. The VennDiagram package just needs the total numbers for all four groups and then details of the intersections, i.e. you don’t need to work out the groups minus their intersections – it does this for you.

library(rtweet)
library(httpuv)
library(VennDiagram)
## whatever name you assigned to your created app
appname <- "whatever_name"
## api key (example below is not a real key)
key <- "blah614h"
## api secret (example below is not a real key)
secret <- "blah614h"
## create token named "twitter_token"
twitter_token <- create_token(
app = appname,
consumer_key = key,
consumer_secret = secret)
clathrin_followers <- get_followers("clathrin", n = "all")
clathrin_followers_names <- lookup_users(clathrin_followers)
quantixed_followers <- get_followers("quantixed", n = "all")
quantixed_followers_names <- lookup_users(quantixed_followers)
cmcb_followers <- get_followers("Warwick_CMCB", n = "all")
cmcb_followers_names <- lookup_users(cmcb_followers)
roylelab_followers <- get_followers("roylelab", n = "all")
roylelab_followers_names <- lookup_users(roylelab_followers)
# a = clathrin
# b = quantixed
# c = cmcb
# d = roylelab
## now work out intersections
anb <- intersect(clathrin_followers_names$user_id,quantixed_followers_names$user_id)
anc <- intersect(clathrin_followers_names$user_id,cmcb_followers_names$user_id)
and <- intersect(clathrin_followers_names$user_id,roylelab_followers_names$user_id)
bnc <- intersect(quantixed_followers_names$user_id,cmcb_followers_names$user_id)
bnd <- intersect(quantixed_followers_names$user_id,roylelab_followers_names$user_id)
cnd <- intersect(cmcb_followers_names$user_id,roylelab_followers_names$user_id)
anbnc <- intersect(anb,cmcb_followers_names$user_id)
anbnd <- intersect(anb,roylelab_followers_names$user_id)
ancnd <- intersect(anc,roylelab_followers_names$user_id)
bncnd <- intersect(bnc,roylelab_followers_names$user_id)
anbncnd <- intersect(anbnc,roylelab_followers_names$user_id)
## four-set Venn diagram
venn.plot <- draw.quad.venn(
area1 = nrow(clathrin_followers_names),
area2 = nrow(quantixed_followers_names),
area3 = nrow(cmcb_followers_names),
area4 = nrow(roylelab_followers_names),
n12 = length(anb),
n13 = length(anc),
n14 = length(and),
n23 = length(bnc),
n24 = length(bnd),
n34 = length(cnd),
n123 = length(anbnc),
n124 = length(anbnd),
n134 = length(ancnd),
n234 = length(bncnd),
n1234 = length(anbncnd),
category = c("Clathrin", "quantixed", "CMCB", "RoyleLab"),
fill = c("dodgerblue1", "red", "goldenrod1", "green"),
lty = "dashed",
cex = 2,
cat.cex = 1.5,
cat.col = c("dodgerblue1", "red", "goldenrod1", "green"),
fontfamily = "Helvetica",
cat.fontfamily = "Helvetica"
);
# write to file
png(filename = "Quad_Venn_diagram.png");
grid.draw(venn.plot);
dev.off()

I’ll probably return to rtweet in future and will recycle the title if I do.

Like last time, the post title is from “I’m Not Following You” the final track from the 1997 LP of the same name from Edwyn Collins

I’m not following you: Twitter data and R

I wondered how many of the people that I follow on Twitter do not follow me back. A quick way to look at this is with R. OK, a really quick way is to give a 3rd party application access rights to your account to do this for you, but a) that isn’t safe, b) you can’t look at anyone else’s data, and c) this is quantixed – doing nerdy stuff like this is what I do. Now, the great thing about R is the availability of well-written packages to do useful stuff. I quickly found two packages twitteR and rtweet that are designed to harvest Twitter data. I went with rtweet and there were some great guides to setting up OAuth and getting going.

The code below set up my environment and pulled down lists of my followers and my “friends”. I’m looking at my main account and not the quantixed twitter account.


library(rtweet)
library(httpuv)
## setup your appname,api key and api secret
appname <- "whatever_name"
key <- "blah614h"
secret <- "blah614h"
## create token named "twitter_token"
twitter_token <- create_token(
app = appname,
consumer_key = key,
consumer_secret = secret)

clathrin_followers <- get_followers("clathrin", n = "all")
clathrin_followers_names <- lookup_users(clathrin_followers)
clathrin_friends <- get_friends("clathrin")
clathrin_friends_names <- lookup_users(clathrin_friends)

The terminology is that people that follow me are called Followers and people that I follow are called Friends. These are the terms used by Twitter’s API. I have almost 3000 followers and around 1200 friends.

This was a bit strange… I had fewer followers with data than actual followers. Same for friends: missing a few hundred in total. I extracted a list of the Twitter IDs that had no data and tried a few other ways to look them up. All failed. I assume that these are users who have deleted their account (and the Twitter ID stays reserved) or maybe they are suspended for some reason. Very strange.


## noticed something weird
## look at the twitter ids of followers and friends with no data
missing_followers <- setdiff(clathrin_followers$user_id,clathrin_followers_names$user_id)
missing_friends <- setdiff(clathrin_friends$user_id,clathrin_friends_names$user_id)

## find how many real followers/friends are in each set
aub <- union(clathrin_followers_names$user_id,clathrin_friends_names$user_id)
anb <- intersect(clathrin_followers_names$user_id,clathrin_friends_names$user_id)

## make an Euler plot to look at overlap
fit <- euler(c(
"Followers" = nrow(clathrin_followers_names) - length(anb),
"Friends" = nrow(clathrin_friends_names) - length(anb),
"Followers&amp;Friends" = length(anb)))
plot(fit)
plot(fit)

In the code above, I arranged in sets the “real Twitter users” who follow me or I follow them. There was an overlap of 882 users, leaving 288 Friends who don’t follow me back – boo hoo!

I next wanted to see who these people are, which is pretty straightforward.


## who are the people I follow who don't follow me back
bonly <- setdiff(clathrin_friends_names$user_id,anb)
no_follow_back <- lookup_users(bonly)

Looking at no_follow_back was interesting. There are a bunch of announcement accounts and people with huge follower counts that I wasn’t surprised do not follow me back. There are a few people on the list with whom I have interacted yet they don’t follow me, which is a bit odd. I guess they could have unfollowed me at some point in the past, but my guess is they were never following me in the first place. It used to be the case that you could only see tweets from people you followed, but the boundaries have blurred a lot in recent years. An intermediary only has to retweet something you have written for someone else to see it and you can then interact, without actually following each other. In fact, my own Twitter experience is mainly through lists, rather than my actual timeline. And to look at tweets in a list you don’t need to follow anyone on there. All of this led me to thinking: maybe other people (who follow me) are wondering why I don’t follow them back… I should look at what I am missing out on.

## who are the people who follow me but I don't follow back
aonly <- setdiff(clathrin_followers_names$user_id,anb)
no_friend_back <- lookup_users(aonly)
## save csvs with all user data for unreciprocated follows
write.csv(no_follow_back, file = "nfb.csv")
write.csv(no_friend_back, file = "nfb2.csv")

With this last bit of code, I was able to save a file for each subset of unreciprocated follows/friends. Again there were some interesting people on this list. I must’ve missed them following me and didn’t follow back.

I used these lists to prune my friends and to follow some interesting new people. The csv files contain the Twitter bio of all the accounts so it’s quick to go through and check who is who and who is worth following. Obviously you can search all of this content for keywords and things you are interested in.

So there you have it. This is my first “all R” post on quantixed – hope you liked it!

The post title is from “I’m Not Following You” the final track from the 1997 LP of the same name from Edwyn Collins.